Rowley, J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: international prevalence and incidence estimates, 2016. Bull. World Well being Organ. 97, 548–562P (2019).
Article
Google Scholar
Marazzo, J. M. & Apicella, M. A. in Ideas and Follow of Infectious Illness (eds. Bennett, J. E. et al.) Ch. 214 (Saunders, 2015).
Ma, Okay. C. et al. Adaptation to the cervical surroundings is related to elevated antibiotic susceptibility in Neisseria gonorrhoeae. Nat. Commun. 11, 4126 (2020).
Article
CAS
Google Scholar
Lewis, L. A. & Ram, S. Complement interactions with the pathogenic Neisseriae: medical options, deficiency states, and evasion mechanisms. FEBS Lett. 594, 2670–2694 (2020).
Article
CAS
Google Scholar
Golparian, D. et al. Genomic evolution of Neisseria gonorrhoeae for the reason that preantibiotic period (1928-2013): antimicrobial use/misuse selects for resistance and drives evolution. BMC Genomics 21, 116 (2020).
Article
CAS
Google Scholar
Gransden, W. R., Warren, C. A., Phillips, I., Hodges, M. & Barlow, D. Decreased susceptibility of Neisseria gonorrhoeae to ciprofloxacin. Lancet (Lond., Engl.) 335, 51 (1990).
Article
CAS
Google Scholar
Unemo, M. & Shafer, W. M. Antimicrobial resistance in Neisseria gonorrhoeae within the twenty first century: previous, evolution, and future. Clin. Microbiol. Rev. 27, 587–613 (2014).
Article
Google Scholar
Sexually Transmitted Illness Surveillance – 2020 (CDC, 2020).
WHO Gonococcal AMR Surveillance Programme. WHO https://www.who.int/knowledge/gho/knowledge/themes/matters/who-gonococcal-amr-surveillance-programme-who-gasp (2022).
Rubin, D. H. F., Ross, J. D. C. & Grad, Y. H. The frontiers of addressing antibiotic resistance in Neisseria gonorrhoeae. Transl. Res.https://doi.org/10.1016/j.trsl.2020.02.002 (2020).
Article
Google Scholar
Ito, M. et al. Emergence and unfold of Neisseria gonorrhoeae medical isolates harboring mosaic-like construction of penicillin-binding protein 2 in Central Japan. Antimicrobial Brokers Chemother. 49, 137–143 (2005).
Article
CAS
Google Scholar
Sánchez-Busó, L. et al. The impression of antimicrobials on gonococcal evolution. Nat. Microbiol. 4, 1941–1950 (2019).
Article
Google Scholar
Mortimer, T. D. et al. The distribution and unfold of prone and resistant Neisseria gonorrhoeae throughout demographic teams in a serious metropolitan middle. Clin. Infect. Dis.: Off. Publ. Infect. Dis. Soc. Am. 73, e3146–e3155 (2021).
Article
CAS
Google Scholar
Williamson, D. A. et al. Bridging of Neisseria gonorrhoeae lineages throughout sexual networks within the HIV pre-exposure prophylaxis period. Nat. Commun. 10, 3988 (2019).
Article
Google Scholar
Lopatkin, A. J. et al. Clinically related mutations in core metabolic genes confer antibiotic resistance. Sci. (N. Y., N. Y.) 371, eaba0862 (2021).
Article
CAS
Google Scholar
Pinheiro, F., Warsi, O., Andersson, D. I. & Lässig, M. Metabolic health landscapes predict the evolution of antibiotic resistance. Nat. Ecol. Evol. 5, 677–687 (2021).
Article
Google Scholar
Spence, J. M., Wright, L. & Clark, V. L. Laboratory upkeep of Neisseria gonorrhoeae. Curr. Protoc. Microbiol. 4, Unit 4A.1 (2008); https://doi.org/10.1002/9780471729259.mc04a01s8
Platt, D. J. Carbon dioxide requirement of Neisseria gonorrhoeae rising on a stable medium. J. Clin. Microbiol 4, 129–132 (1976).
Article
CAS
Google Scholar
Huang, S. et al. Crystal construction of carbonic anhydrase from Neisseria gonorrhoeae and its advanced with the inhibitor acetazolamide. J. Mol. Biol. 283, 301–310 (1998).
Article
CAS
Google Scholar
Elleby, B., Chirica, L. C., Tu, C., Zeppezauer, M. & Lindskog, S. Characterization of carbonic anhydrase from Neisseria gonorrhoeae. Eur. J. Biochem 268, 1613–1619 (2001).
Article
CAS
Google Scholar
Hewitt, C. S. et al. Construction-activity relationship research of acetazolamide-based carbonic anhydrase inhibitors with exercise in opposition to Neisseria gonorrhoeae. ACS Infect. Dis. 7, 1969–1984 (2021).
Article
CAS
Google Scholar
Remmele, C. W. et al. Transcriptional panorama and important genes of Neisseria gonorrhoeae. Nucleic Acid Res. 42, 10579–10595 (2014).
Article
CAS
Google Scholar
Merlin, C., Masters, M., McAteer, S. & Coulson, A. Why is carbonic anhydrase important to Escherichia coli? J. Bacteriol. 185, 6415–6424 (2003).
Article
CAS
Google Scholar
Teufel, F. et al. SignalP 6.0 predicts all 5 sorts of sign peptides utilizing protein language fashions. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01156-3 (2022).
Article
Google Scholar
Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).
Article
CAS
Google Scholar
Burghout, P. et al. A single amino acid substitution within the MurF UDP-MurNAc-pentapeptide synthetase renders Streptococcus pneumoniae depending on CO2 and temperature. Mol. Microbiol. 89, 494–506 (2013).
Article
CAS
Google Scholar
Dillard, J. P. Genetic manipulation of Neisseria gonorrhoeae. Curr. Protoc. Microbiol. 23, Unit 4A.2 (2011); https://doi.org/10.1002/9780471729259.mc04a02s23
Tuttle, D. M. & Scherp, H. W. Research on the carbon dioxide requirement of Neisseria meningitidis. J. Bacteriol. 64, 171–182 (1952).
Article
CAS
Google Scholar
Fan, S. H. et al. MpsAB is necessary for Staphylococcus aureus virulence and progress at atmospheric CO(2) ranges. Nat. Commun. 10, 3627 (2019).
Article
Google Scholar
Linhares, I. M., Summers, P. R., Larsen, B., Giraldo, P. C. & Witkin, S. S. Up to date views on vaginal pH and lactobacilli. Am. J. Obstet. Gynecol. 204, 120.e121–125 (2011).
Article
Google Scholar
Muir, A. et al. Building of a whole set of Neisseria meningitidis mutants and its use for the phenotypic profiling of this human pathogen. Nat. Commun. 11, 5541 (2020).
Article
CAS
Google Scholar
Kampmeier, R. H. Introduction of sulfonamide remedy for gonorrhea. Intercourse. Trans. Dis. 10, 81–84 (1983).
Article
CAS
Google Scholar
Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).
Article
Google Scholar
Yao, J., Bruhn, D. F., Frank, M. W., Lee, R. E. & Rock, C. O. Activation of exogenous fatty acids to acyl-acyl provider protein can’t bypass FabI inhibition in Neisseria. J. Biol. Chem. 291, 171–181 (2016).
Article
CAS
Google Scholar
Kitzenberg, D. A. et al. Adenosine awakens metabolism to reinforce growth-independent killing of tolerant and persister micro organism throughout a number of lessons of antibiotics. mBio 13, e0048022 (2022).
Article
Google Scholar
Firestine, S. M., Poon, S. W., Mueller, E. J., Stubbe, J. & Davisson, V. J. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms. Biochem. 33, 11927–11934 (1994).
Article
CAS
Google Scholar
Andersson, D. I. & Hughes, D. Antibiotic resistance and its value: is it doable to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).
Article
CAS
Google Scholar
MacLean, R. C. & San Millan, A. The evolution of antibiotic resistance. Sci. (N. Y., N. Y.) 365, 1082–1083 (2019).
Article
CAS
Google Scholar
Sousa, A., Magalhães, S. & Gordo, I. Value of antibiotic resistance and the geometry of adaptation. Mol. Biol. Evol. 29, 1417–1428 (2012).
Article
CAS
Google Scholar
Sommer, M. O. A., Munck, C., Toft-Kehler, R. V. & Andersson, D. I. Prediction of antibiotic resistance: time for a brand new preclinical paradigm? Nat. Rev. Microbiol. 15, 689–696 (2017).
Article
CAS
Google Scholar
Vincent, L. R. et al. In vivo-selected compensatory mutations restore the health value of mosaic pena alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. mBio 9, e01905–e01917 (2018).
Article
CAS
Google Scholar
Kohler, P. L., Hamilton, H. L., Cloud-Hansen, Okay. & Dillard, J. P. AtlA capabilities as a peptidoglycan lytic transglycosylase within the Neisseria gonorrhoeae sort IV secretion system. J. Bacteriol. 189, 5421–5428 (2007).
Article
CAS
Google Scholar
Ramsey, M. E., Hackett, Okay. T., Kotha, C. & Dillard, J. P. New complementation constructs for inducible and constitutive gene expression in Neisseria gonorrhoeae and Neisseria meningitidis. Appl. Environ. Microbiol 78, 3068–3078 (2012).
Article
CAS
Google Scholar
Norrander, J., Kempe, T. & Messing, J. Building of improved M13 vectors utilizing oligodeoxynucleotide-directed mutagenesis. Gene 26, 101–106 (1983).
Article
CAS
Google Scholar
Edwards, R. A., Keller, L. H. & Schifferli, D. M. Improved allelic change vectors and their use to investigate 987P fimbria gene expression. Gene 207, 149–157 (1998).
Article
CAS
Google Scholar
Maness, M. J. & Sparling, P. F. A number of antibiotic resistance resulting from a single mutation in Neisseria gonorrhoeae. J. Infect. Dis. 128, 321–330 (1973).
Article
CAS
Google Scholar
Cohen, M. S. et al. Human experimentation with Neisseria gonorrhoeae: rationale, strategies, and implications for the biology of an infection and vaccine improvement. J. Infect. Dis. 169, 532–537 (1994).
Article
CAS
Google Scholar
Faruki, H. & Sparling, P. F. Genetics of resistance in a non-beta-lactamase-producing gonococcus with comparatively high-level penicillin resistance. Antimicrobial. Brokers. Chemother. 30, 856–860 (1986).
Article
CAS
Google Scholar
Johnson, S. R., Steiner, B. M. & Perkins, G. H. Cloning and characterization of the catalase gene of Neisseria gonorrhoeae: use of the gonococcus as a bunch organism for recombinant DNA. Infect. Immun. 64, 2627–2634 (1996).
Article
CAS
Google Scholar
Guyer, M. S., Reed, R. R., Steitz, J. A. & Low, Okay. B. Identification of a sex-factor-affinity web site in E. coli as gamma delta. Chilly Spring Harb. Symp. Quant. Biol. 45 Pt 1, 135–140 (1981).
Article
CAS
Google Scholar
Palace, S. G. et al. RNA polymerase mutations trigger cephalosporin resistance in medical Neisseria gonorrhoeae isolates. eLife 9, e51407 (2020).
Article
CAS
Google Scholar
Kellogg, D. S. Jr., Peacock, W. L. Jr., Deacon, W. E., Brown, L. & Pirkle, D. I. Neisseria gonorrhoeae. I. virulence genetically linked to cloncal variation. J. Bacteriol. 85, 1274–1279 (1963).
Article
Google Scholar
Heng, L. Aligning sequence reads, clone sequences and meeting contigs with BWA-MEM. Preprint at arXiv.1303.3997 (2013).
García-Alcalde, F. et al. Qualimap: evaluating next-generation sequencing alignment knowledge. Bioinformatics 28, 2678–2679 (2012).
Article
Google Scholar
Walker, B. J. et al. Pilon: an built-in device for complete microbial variant detection and genome meeting enchancment. PLoS ONE 9, e112963 (2014).
Article
Google Scholar
Bankevich, A. et al. SPAdes: a brand new genome meeting algorithm and its purposes to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Article
CAS
Google Scholar
Seemann, T. Prokka: fast prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Article
CAS
Google Scholar
Web page, A. J. et al. Roary: fast large-scale prokaryote pan genome evaluation. Bioinformatics 31, 3691–3693 (2015).
Article
CAS
Google Scholar
Thorpe, H. A., Bayliss, S. C., Sheppard, S. Okay. & Feil, E. J. Piggy: a fast, large-scale pan-genome evaluation device for intergenic areas in micro organism. Gigascience 7, 1–11 (2018).
Article
Google Scholar
Croucher, N. J. et al. Speedy phylogenetic evaluation of huge samples of recombinant bacterial complete genome sequences utilizing Gubbins. Nucleic Acids Res. 43, e15 (2015).
Article
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: a web based device for phylogenetic tree show and annotation. Nucleic Acids Res. 49, W293–w296 (2021).
Article
CAS
Google Scholar
Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N. & Corander, J. pyseer: a complete device for microbial pangenome-wide affiliation research. Bioinformatics 34, 4310–4312 (2018).
Article
CAS
Google Scholar
Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).
Article
CAS
Google Scholar
Li, H. A statistical framework for SNP calling, mutation discovery, affiliation mapping and inhabitants genetical parameter estimation from sequencing knowledge. Bioinformatics 27, 2987–2993 (2011).
Article
CAS
Google Scholar
Liao, Y., Smyth, G. Okay. & Shi, W. featureCounts: an environment friendly common objective program for assigning sequence reads to genomic options. Bioinformatics 30, 923–930 (2014).
Article
CAS
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).
Article
Google Scholar
Stein, D. C., Danaher, R. J. & Cook dinner, T. M. Characterization of a gyrB mutation liable for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrobial Brokers Chemother. 35, 622–626 (1991).
Article
CAS
Google Scholar
Bushnell, B., Rood, J. & Singer, E. BBMerge – correct paired shotgun learn merging through overlap. PLoS ONE 12, e0185056 (2017).
Article
Google Scholar
Ma, Okay. C. et al. Elevated antibiotic susceptibility in Neisseria gonorrhoeae via adaptation to the cervical surroundings. Preprint at bioRxiv https://doi.org/10.1101/2020.01.07.896696 (2020).
Stamatakis, A. RAxML model 8: a device for phylogenetic evaluation and post-analysis of huge phylogenies. Bioinformatics 30, 1312–1313 (2014).
Article
CAS
Google Scholar
Gibson, D. G. et al. Enzymatic meeting of DNA molecules as much as a number of hundred kilobases. Nat. Strategies 6, 343–345 (2009).
Article
CAS
Google Scholar
Wade, J. J. & Graver, M. A. A totally outlined, clear and protein-free liquid medium allowing dense progress of Neisseria gonorrhoeae from very low inocula. FEMS Microbiol. Lett. 273, 35–37 (2007).
Article
CAS
Google Scholar
Mazoyer, A., Drouilhet, R., Despréaux, S. & Ycart, B. flan: an R bundle for inference on mutation fashions. R J. 9, 334–351 (2017).
Article
Google Scholar