Connect with us

drug

CanB is a metabolic mediator of antibiotic resistance in Neisseria gonorrhoeae

Published

on


  • Rowley, J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: international prevalence and incidence estimates, 2016. Bull. World Well being Organ. 97, 548–562P (2019).

    Article 

    Google Scholar
     

  • Marazzo, J. M. & Apicella, M. A. in Ideas and Follow of Infectious Illness (eds. Bennett, J. E. et al.) Ch. 214 (Saunders, 2015).

  • Ma, Okay. C. et al. Adaptation to the cervical surroundings is related to elevated antibiotic susceptibility in Neisseria gonorrhoeae. Nat. Commun. 11, 4126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, L. A. & Ram, S. Complement interactions with the pathogenic Neisseriae: medical options, deficiency states, and evasion mechanisms. FEBS Lett. 594, 2670–2694 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Golparian, D. et al. Genomic evolution of Neisseria gonorrhoeae for the reason that preantibiotic period (1928-2013): antimicrobial use/misuse selects for resistance and drives evolution. BMC Genomics 21, 116 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gransden, W. R., Warren, C. A., Phillips, I., Hodges, M. & Barlow, D. Decreased susceptibility of Neisseria gonorrhoeae to ciprofloxacin. Lancet (Lond., Engl.) 335, 51 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Unemo, M. & Shafer, W. M. Antimicrobial resistance in Neisseria gonorrhoeae within the twenty first century: previous, evolution, and future. Clin. Microbiol. Rev. 27, 587–613 (2014).

    Article 

    Google Scholar
     

  • Sexually Transmitted Illness Surveillance – 2020 (CDC, 2020).

  • WHO Gonococcal AMR Surveillance Programme. WHO https://www.who.int/knowledge/gho/knowledge/themes/matters/who-gonococcal-amr-surveillance-programme-who-gasp (2022).

  • Rubin, D. H. F., Ross, J. D. C. & Grad, Y. H. The frontiers of addressing antibiotic resistance in Neisseria gonorrhoeae. Transl. Res.https://doi.org/10.1016/j.trsl.2020.02.002 (2020).

    Article 

    Google Scholar
     

  • Ito, M. et al. Emergence and unfold of Neisseria gonorrhoeae medical isolates harboring mosaic-like construction of penicillin-binding protein 2 in Central Japan. Antimicrobial Brokers Chemother. 49, 137–143 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sánchez-Busó, L. et al. The impression of antimicrobials on gonococcal evolution. Nat. Microbiol. 4, 1941–1950 (2019).

    Article 

    Google Scholar
     

  • Mortimer, T. D. et al. The distribution and unfold of prone and resistant Neisseria gonorrhoeae throughout demographic teams in a serious metropolitan middle. Clin. Infect. Dis.: Off. Publ. Infect. Dis. Soc. Am. 73, e3146–e3155 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Williamson, D. A. et al. Bridging of Neisseria gonorrhoeae lineages throughout sexual networks within the HIV pre-exposure prophylaxis period. Nat. Commun. 10, 3988 (2019).

    Article 

    Google Scholar
     

  • Lopatkin, A. J. et al. Clinically related mutations in core metabolic genes confer antibiotic resistance. Sci. (N. Y., N. Y.) 371, eaba0862 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pinheiro, F., Warsi, O., Andersson, D. I. & Lässig, M. Metabolic health landscapes predict the evolution of antibiotic resistance. Nat. Ecol. Evol. 5, 677–687 (2021).

    Article 

    Google Scholar
     

  • Spence, J. M., Wright, L. & Clark, V. L. Laboratory upkeep of Neisseria gonorrhoeae. Curr. Protoc. Microbiol. 4, Unit 4A.1 (2008); https://doi.org/10.1002/9780471729259.mc04a01s8

  • Platt, D. J. Carbon dioxide requirement of Neisseria gonorrhoeae rising on a stable medium. J. Clin. Microbiol 4, 129–132 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Huang, S. et al. Crystal construction of carbonic anhydrase from Neisseria gonorrhoeae and its advanced with the inhibitor acetazolamide. J. Mol. Biol. 283, 301–310 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Elleby, B., Chirica, L. C., Tu, C., Zeppezauer, M. & Lindskog, S. Characterization of carbonic anhydrase from Neisseria gonorrhoeae. Eur. J. Biochem 268, 1613–1619 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Hewitt, C. S. et al. Construction-activity relationship research of acetazolamide-based carbonic anhydrase inhibitors with exercise in opposition to Neisseria gonorrhoeae. ACS Infect. Dis. 7, 1969–1984 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Remmele, C. W. et al. Transcriptional panorama and important genes of Neisseria gonorrhoeae. Nucleic Acid Res. 42, 10579–10595 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Merlin, C., Masters, M., McAteer, S. & Coulson, A. Why is carbonic anhydrase important to Escherichia coli? J. Bacteriol. 185, 6415–6424 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Teufel, F. et al. SignalP 6.0 predicts all 5 sorts of sign peptides utilizing protein language fashions. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01156-3 (2022).

    Article 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Burghout, P. et al. A single amino acid substitution within the MurF UDP-MurNAc-pentapeptide synthetase renders Streptococcus pneumoniae depending on CO2 and temperature. Mol. Microbiol. 89, 494–506 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dillard, J. P. Genetic manipulation of Neisseria gonorrhoeae. Curr. Protoc. Microbiol. 23, Unit 4A.2 (2011); https://doi.org/10.1002/9780471729259.mc04a02s23

  • Tuttle, D. M. & Scherp, H. W. Research on the carbon dioxide requirement of Neisseria meningitidis. J. Bacteriol. 64, 171–182 (1952).

    Article 
    CAS 

    Google Scholar
     

  • Fan, S. H. et al. MpsAB is necessary for Staphylococcus aureus virulence and progress at atmospheric CO(2) ranges. Nat. Commun. 10, 3627 (2019).

    Article 

    Google Scholar
     

  • Linhares, I. M., Summers, P. R., Larsen, B., Giraldo, P. C. & Witkin, S. S. Up to date views on vaginal pH and lactobacilli. Am. J. Obstet. Gynecol. 204, 120.e121–125 (2011).

    Article 

    Google Scholar
     

  • Muir, A. et al. Building of a whole set of Neisseria meningitidis mutants and its use for the phenotypic profiling of this human pathogen. Nat. Commun. 11, 5541 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kampmeier, R. H. Introduction of sulfonamide remedy for gonorrhea. Intercourse. Trans. Dis. 10, 81–84 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).

    Article 

    Google Scholar
     

  • Yao, J., Bruhn, D. F., Frank, M. W., Lee, R. E. & Rock, C. O. Activation of exogenous fatty acids to acyl-acyl provider protein can’t bypass FabI inhibition in Neisseria. J. Biol. Chem. 291, 171–181 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kitzenberg, D. A. et al. Adenosine awakens metabolism to reinforce growth-independent killing of tolerant and persister micro organism throughout a number of lessons of antibiotics. mBio 13, e0048022 (2022).

    Article 

    Google Scholar
     

  • Firestine, S. M., Poon, S. W., Mueller, E. J., Stubbe, J. & Davisson, V. J. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms. Biochem. 33, 11927–11934 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Andersson, D. I. & Hughes, D. Antibiotic resistance and its value: is it doable to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    Article 
    CAS 

    Google Scholar
     

  • MacLean, R. C. & San Millan, A. The evolution of antibiotic resistance. Sci. (N. Y., N. Y.) 365, 1082–1083 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sousa, A., Magalhães, S. & Gordo, I. Value of antibiotic resistance and the geometry of adaptation. Mol. Biol. Evol. 29, 1417–1428 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sommer, M. O. A., Munck, C., Toft-Kehler, R. V. & Andersson, D. I. Prediction of antibiotic resistance: time for a brand new preclinical paradigm? Nat. Rev. Microbiol. 15, 689–696 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Vincent, L. R. et al. In vivo-selected compensatory mutations restore the health value of mosaic pena alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. mBio 9, e01905–e01917 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kohler, P. L., Hamilton, H. L., Cloud-Hansen, Okay. & Dillard, J. P. AtlA capabilities as a peptidoglycan lytic transglycosylase within the Neisseria gonorrhoeae sort IV secretion system. J. Bacteriol. 189, 5421–5428 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ramsey, M. E., Hackett, Okay. T., Kotha, C. & Dillard, J. P. New complementation constructs for inducible and constitutive gene expression in Neisseria gonorrhoeae and Neisseria meningitidis. Appl. Environ. Microbiol 78, 3068–3078 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Norrander, J., Kempe, T. & Messing, J. Building of improved M13 vectors utilizing oligodeoxynucleotide-directed mutagenesis. Gene 26, 101–106 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Edwards, R. A., Keller, L. H. & Schifferli, D. M. Improved allelic change vectors and their use to investigate 987P fimbria gene expression. Gene 207, 149–157 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Maness, M. J. & Sparling, P. F. A number of antibiotic resistance resulting from a single mutation in Neisseria gonorrhoeae. J. Infect. Dis. 128, 321–330 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Cohen, M. S. et al. Human experimentation with Neisseria gonorrhoeae: rationale, strategies, and implications for the biology of an infection and vaccine improvement. J. Infect. Dis. 169, 532–537 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Faruki, H. & Sparling, P. F. Genetics of resistance in a non-beta-lactamase-producing gonococcus with comparatively high-level penicillin resistance. Antimicrobial. Brokers. Chemother. 30, 856–860 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, S. R., Steiner, B. M. & Perkins, G. H. Cloning and characterization of the catalase gene of Neisseria gonorrhoeae: use of the gonococcus as a bunch organism for recombinant DNA. Infect. Immun. 64, 2627–2634 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Guyer, M. S., Reed, R. R., Steitz, J. A. & Low, Okay. B. Identification of a sex-factor-affinity web site in E. coli as gamma delta. Chilly Spring Harb. Symp. Quant. Biol. 45 Pt 1, 135–140 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Palace, S. G. et al. RNA polymerase mutations trigger cephalosporin resistance in medical Neisseria gonorrhoeae isolates. eLife 9, e51407 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kellogg, D. S. Jr., Peacock, W. L. Jr., Deacon, W. E., Brown, L. & Pirkle, D. I. Neisseria gonorrhoeae. I. virulence genetically linked to cloncal variation. J. Bacteriol. 85, 1274–1279 (1963).

    Article 

    Google Scholar
     

  • Heng, L. Aligning sequence reads, clone sequences and meeting contigs with BWA-MEM. Preprint at arXiv.1303.3997 (2013).

  • García-Alcalde, F. et al. Qualimap: evaluating next-generation sequencing alignment knowledge. Bioinformatics 28, 2678–2679 (2012).

    Article 

    Google Scholar
     

  • Walker, B. J. et al. Pilon: an built-in device for complete microbial variant detection and genome meeting enchancment. PLoS ONE 9, e112963 (2014).

    Article 

    Google Scholar
     

  • Bankevich, A. et al. SPAdes: a brand new genome meeting algorithm and its purposes to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Seemann, T. Prokka: fast prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Web page, A. J. et al. Roary: fast large-scale prokaryote pan genome evaluation. Bioinformatics 31, 3691–3693 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Thorpe, H. A., Bayliss, S. C., Sheppard, S. Okay. & Feil, E. J. Piggy: a fast, large-scale pan-genome evaluation device for intergenic areas in micro organism. Gigascience 7, 1–11 (2018).

    Article 

    Google Scholar
     

  • Croucher, N. J. et al. Speedy phylogenetic evaluation of huge samples of recombinant bacterial complete genome sequences utilizing Gubbins. Nucleic Acids Res. 43, e15 (2015).

    Article 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: a web based device for phylogenetic tree show and annotation. Nucleic Acids Res. 49, W293–w296 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N. & Corander, J. pyseer: a complete device for microbial pangenome-wide affiliation research. Bioinformatics 34, 4310–4312 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. A statistical framework for SNP calling, mutation discovery, affiliation mapping and inhabitants genetical parameter estimation from sequencing knowledge. Bioinformatics 27, 2987–2993 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Liao, Y., Smyth, G. Okay. & Shi, W. featureCounts: an environment friendly common objective program for assigning sequence reads to genomic options. Bioinformatics 30, 923–930 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    Article 

    Google Scholar
     

  • Stein, D. C., Danaher, R. J. & Cook dinner, T. M. Characterization of a gyrB mutation liable for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrobial Brokers Chemother. 35, 622–626 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Bushnell, B., Rood, J. & Singer, E. BBMerge – correct paired shotgun learn merging through overlap. PLoS ONE 12, e0185056 (2017).

    Article 

    Google Scholar
     

  • Ma, Okay. C. et al. Elevated antibiotic susceptibility in Neisseria gonorrhoeae via adaptation to the cervical surroundings. Preprint at bioRxiv https://doi.org/10.1101/2020.01.07.896696 (2020).

  • Stamatakis, A. RAxML model 8: a device for phylogenetic evaluation and post-analysis of huge phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gibson, D. G. et al. Enzymatic meeting of DNA molecules as much as a number of hundred kilobases. Nat. Strategies 6, 343–345 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wade, J. J. & Graver, M. A. A totally outlined, clear and protein-free liquid medium allowing dense progress of Neisseria gonorrhoeae from very low inocula. FEMS Microbiol. Lett. 273, 35–37 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Mazoyer, A., Drouilhet, R., Despréaux, S. & Ycart, B. flan: an R bundle for inference on mutation fashions. R J. 9, 334–351 (2017).

    Article 

    Google Scholar
     



  • Supply hyperlink

    drug

    TransCode Therapeutics Announces $1.2 Million Registered Direct … – StreetInsider.com

    Published

    on

    By

    Continue Reading

    drug

    Experts slam Kourtney Kardashian for selling 'harmful pseudoscience' as she says her $400 placenta capsule – Daily Mail

    Published

    on

    By

    Continue Reading

    drug

    Kyowa Hakko educates dieticians and nutritionists about mind … – Nutritional Outlook

    Published

    on

    By

    Continue Reading

    Trending

    Copyright © 2017 Zox News Theme. Theme by MVP Themes, powered by WordPress.